Sunday, December 5, 2010

Human Lens

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refractlight to be focused on the retina. The lens, by changing shape, functions to change the focal distance of the eye so that it can focus on objects at various distances, thus allowing a sharp real image of the object of interest to be formed on the retina. This adjustment of the lens is known as accommodation . It is similar to the focusing of a photographic camera via movement of its lenses. The lens is flatter on its anterior side.The lens is also known as the aquula (Latin, a little stream, dim. of aquawater) or crystalline lens. In humans, the refractive power of the lens in its natural environment is approximately 18 dioptres, roughly one-third of the eye's total power.


Position, size, and shape

The lens is part of the anterior segment of the eye. Anterior to the lens is the iris, which regulates the amount of light entering into the eye. The lens is suspended in place by the zonular fibers, which attach to the lens near its equatorial line and connect the lens to the ciliary body. Posterior to the lens is the vitreous body, which, along with the aqueous humor on the anterior surface, bathes the lens. The lens has an ellipsoid, biconvex shape. The anterior surface is less curved than the posterior. In the adult, the lens is typically circa 10 mm in diameter and has an axial length of about 4 mm, though it is important to note that the size and shape can change due to accommodation and because the lens continues to grow throughout a person’s lifetime



Variations among vertebrates

In many aquatic vertebrates, the lens is considerably thicker, almost spherical, to increase the refraction of light. This difference compensates for the smaller angle of refraction between the eye's cornea and the watery medium, as they have similar refractive indices.  Even among terrestrial animals, however, the lens of primates such as humans is unusually flat.
In reptiles and birds, the ciliary body touches the lens with a number of pads on its inner surface, in addition to the zonular fibres. These pads compress and release the lens to modify its shape while focusing on objects at different distances; the zonular fibres perform this function inmammals. In fish and amphibians, the lens is fixed in shape, and focussing is instead achieved by moving the lens forwards or backwards within the eye.
In cartilaginous fish the zonular fibres are replaced by a membrane, including a small muscle at the underside of the lens. This muscle pulls the lens forward from its relaxed position when focusing on nearby objects. In teleosts, by contrast, a muscle projects from a vascular structure in the floor of the eye, called the falciform process, and serves to pull the lens backwards from the relaxed position to focus on distant objects. While amphibians move the lens forward, as do cartilaginous fish, the muscles involved are not homologous with those of either type of fish. In frogs, there are two muscles, one above and one below the lens, while other amphibians have only the lower muscle.
In the most primitive vertebrates, the lampreys and hagfish, the lens is not attached to the outer surface of the eyeball at all. There is no aqueous humour in these fish, and the vitreous body simply presses the lens against the surface of the cornea. To focus its eyes, a lamprey flattens the cornea using muscles outside of the eye, and pushes the lens backwards.


Lens structure and function

The lens has three main parts: the lens capsule, the lens epithelium, and the lens fibers. The lens capsule forms the outermost layer of the lens and the lens fibers form the bulk of the interior of the lens. The cells of the lens epithelium, located between the lens capsule and the outermost layer of lens fibers, are found only on the anterior side of the lens.


Lens capsule

The lens capsule is a smooth, transparent basement membrane that completely surrounds the lens. The capsule is elastic and is composed of collagen. It is synthesized by the lens epithelium and its main components are Type IV collagen and sulfated glycosaminoglycans (GAGs). The capsule is very elastic and so causes the lens to assume a more globular shape when not under the tension of the zonular fibers, which connect the lens capsule to the ciliary body. The capsule varies from 2-28 micrometres in thickness, being thickest near the equator and thinnest near the posterior pole. The lens capsule may be involved with the higher anterior curvature than posterior of the lens.


Lens epithelium

The lens epithelium, located in the anterior portion of the lens between the lens capsule and the lens fibers, is a simple cuboidal epithelium. The cells of the lens epithelium regulate most of the homeostatic functions of the lens. As ions, nutrients, and liquid enter the lens from the aqueous humor, Na+/K+ ATPase pumps in the lens epithelial cells pump ions out of the lens to maintain appropriate lens osmolarity and volume, with equatorially positioned lens epithelium cells contributing most to this current. The activity of the Na+/K+ ATPases keeps water and current flowing through the lens from the poles and exiting through the equatorial regions.
The cells of the lens epithelium also serve as the progenitors for new lens fibers. It constantly lays down fibers in the embryo, fetus, infant, and adult, and continues to lay down fibers for lifelong growth.


Lens fibers

The lens fibers form the bulk of the lens. They are long, thin, transparent cells, firmly packed, with diameters typically between 4-7 micrometres and lengths of up to 12 mm long.The lens fibers stretch lengthwise from the posterior to the anterior poles and, when cut horizontally, are arranged in concentric layers rather like the layers of an onion. If cut along the equator, it appears as a honeycomb. The middle of each fiber lies on the equator. These tightly packed layers of lens fibers are referred to as laminae. The lens fibers are linked together via gap junctions and interdigitations of the cells that resemble “ball and socket” forms.
The lens is split into regions depending on the age of the lens fibers of a particular layer. Moving outwards from the central, oldest layer, the lens is split into an embryonic nucleus, the fetal nucleus, the adult nucleus, and the outer cortex. New lens fibers, generated from the lens epithelium, are added to the outer cortex. Mature lens fibers have no organelles or nuclei.


Accommodation: changing the power of the lens


An image that is partially in focus, but mostly out of focus in varying degrees.
The lens is flexible and its curvature is controlled by ciliary muscles through the zonules. By changing the curvature of the lens, one can focus the eye on objects at different distances from it. This process is called accommodation. At short focal distance the ciliary muscle contracts, zonule fibers loosen, and the lens thickens, resulting in a rounder shape and thus high refractive power. Changing focus to an object at a greater distance requires the relaxation of the ciliary muscle, which in turn increases the tension on the zonules, flattening the lens and thus increasing the focal distance.
The refractive index of the lens varies from approximately 1.406 in the central layers down to 1.386 in less dense cortex of the lens. This index gradient enhances the optical power of the lens.
Aquatic animals must rely entirely on their lens for both focusing and to provide almost the entire refractive power of the eye as the water-cornea interface does not have a large enough difference in indices of refraction to provide significant refractive power. As such, lenses in aquatic eyes tend to be much rounder and harder.

Crystallins and transparency

Crystallins are water-soluble proteins that compose over 90% of the protein within the lens. The three main crystallin types found in the human eye are α-, β-, and γ-crystallins. Crystallins tend to form soluble, high-molecular weight aggregates that pack tightly in lens fibers, thus increasing the index of refraction of the lens while maintaining its transparency. β and γ crystallins are found primarily in the lens, while subunits of α -crystallin have been isolated from other parts of the eye and the body. α-crystallin proteins belong to a larger superfamily of molecular chaperone proteins, and so it is believed that the crystallin proteins were evolutionarily recruited from chaperone proteins for optical purposes. The chaperone functions of α -crystallin may also help maintain the lens proteins, which must last a human for his/her entire lifetime.
Another important factor in maintaining the transparency of the lens is the absence of light-scattering organelles such as the nucleus,endoplasmic reticulum, and mitochondria within the mature lens fibers. Lens fibers also have a very extensive cytoskeleton that maintains the precise shape and packing of the lens fibers; disruptions/mutations in certain cytoskeletal elements can lead to the loss of transparency. 


Development and growth

Development of the human lens begins at the 4 mm embryonic stage. Unlike the rest of the eye, which is derived mostly from the neural ectoderm, the lens is derived from the surface ectoderm. The first stage of lens differentiation takes place when the optic vesicle, which is formed from outpocketings in the neural ectoderm, comes in proximity to the surface ectoderm. The optic vesicle induces nearby surface ectoderm to form thelens placode. At the 4 mm stage, the lens placode is a single monolayer of columnar cells.
As development progresses, the lens placode begins to deepen and invaginate. As the placode continues to deepen, the opening to the surface ectoderm constricts and the lens cells forms a structure known as the lens vesicle. By the 10 mm stage, the lens vesicle has completely separated from the surface ectoderm.
After the 10 mm stage, signals from the developing neural retina induces the cells closest to the posterior end of the lens vesicle begin to elongate toward the anterior end of the vesicle. These signals also induce the synthesis of crystallins. These elongating cells eventually fill in the lumen of the vesicle to form the primary fibers, which become the embryonic nucleus in the mature lens. The cells of the anterior portion of the lens vesicle give rise to the lens epithelium.
Additional secondary fibers are derived from lens epithelial cells located toward the equatorial region of the lens. These cells lengthen anteriorly and posteriorly to encircle the primary fibers. The new fibers grow longer than those of the primary layer, but as the lens gets larger, the ends of the newer fibers cannot reach the posterior or anterior poles of the lens. The lens fibers that do not reach the poles form tight, interdigitating seams with neighboring fibers. These seams are readily visible and are termed sutures. The suture patterns become more complex as more layers of lens fibers are added to the outer portion of the lens.
The lens continues to grow after birth, with the new secondary fibers being added as outer layers. New lens fibers are generated from the equatorial cells of the lens epithelium, in a region referred to as the germinative zone. The lens epithelial cells elongate, lose contact with the capsule and epithelium, synthesize crystallin, and then finally lose their nuclei (enucleate) as they become mature lens fibers.From development through early adulthood, the addition of secondary lens fibers results in the lens growing more ellipsoid in shape; after about age 20, however, the lens grows rounder with time.


Nourishment

The lens is metabolically active and requires nourishment in order to maintain its growth and transparency. Compared to other tissues in the eye, however, the lens has considerably lower energy demands. 
By nine weeks into human development, the lens is surrounded and nourished by a net of vessels, the tunica vasculosa lentis, which is derived from the hyaloid artery. Beginning in the fourth month of development, the hyaloid artery and its related vasculature begin to atrophy and completely disappear by birth. In the postnatal eye, Cloquet’s canal marks the former location of the hyaloid artery.
After regression of the hyaloid artery, the lens receives all its nourishment from the aqueous humor. Nutrients diffuse in and waste diffuses out through a constant flow of fluid from the anterior/posterior poles of the lens and out of the equatorial regions, a dynamic that is maintained by theNa+/K+ ATPase pumps located in the equatorially positioned cells of the lens epithelium.
Glucose is the primary energy source for the lens. As mature lens fibers do not have mitochondria, approximately 80% of the glucose is metabolized via anaerobic respiration. The remaining fraction of glucose is shunted primarily down the pentose phosphate pathway. The lack of aerobic respiration means that the lens consumes very little oxygen as well.

Anatomy of Eyes



Eye anatomy details the arrangement of various eye structures within the orbit. Here's an overview of eye anatomy, eye structure and parts of the eye.

Eye anatomy consists of studying the various eye structures and their arrangement in layers and segments within the orbit.

The eyes are highly specialized and complex structures that confer on human beings (and other animals) the most important of the five special senses – the gift of vision. 




Eye anatomy basically consists of transparent structures like the cornea and the lens, which focus light rays onto the retina, a neural tissue that helps capture images and transmit them to the brain. In addition, there are structures required for protection, support,  nutrition and various other functions. These eye structures are arranged optimally for eye function.

Eye Anatomy – Eyeball, Orbit and Appendages of the Eye

Each eyeball is a globe-like structure, although not strictly spherical. Each globe is nestled safely within deep, cavernous bony sockets in the skull called the orbits. The orbits are quadrilateral, pyramid shaped cavities and are actually lined by seven of the different bones making up the skull.
Within the orbit, the eyeball is suspended by six muscles, the extraocular muscles that are responsible for all its movements. The eyes are protected by skin folds that form the eyelids. The inside of the eyelids and most of the visible surface of the eyeball except the pupil, are covered by a thin, transparent membrane called the conjunctiva. Also, within the orbit alongside the eyeball, are the lacrimal glands or tear glands. These structures form the accessory organs or appendages of the eye.

Eye Structure – Layers, Segments and Chambers of the Eye

The eyeball is basically made up of three layers that have different functions. They are:
  • Outer fibrous layer – This forms the strong outer capsule that holds all the finer elements of the eye. It is transparent in and around the region of the pupil for light transmission and is called the cornea. Over the rest of the eyeball it is opaque and is called the sclera, part of which is seen as the whites of the eyes.
  • Middle vascular coat – This layer consists of parts called iris, ciliary body and choroid that contain pigment and blood vessels and provide nutrition to the eye. Towards the front of the eyeball, this layer becomes the the iris, seen as the pigmented portion of the pupil, giving the eye its colour. The iris is also the structure that helps regulate the size of the pupil’s aperture.
  • Inner nervous layer or the retina – It contains the neural elements like rods and cones necessary for vision.
Within the eyeball, located just behind the iris, is a transparent, crystalline lens whose main function is to focus light rays for vision. The eyeball can be further divided into two parts:
  • Anterior segment
  • Posterior segment
The anterior segment consists of the crystalline lens and the parts in front of it, which are the iris and cornea. It also contains an anterior and a posterior chamber filled with a fluid called aqueous humour. The anterior and posterior chambers together contain about 0.3ml of aqueous humour. The posterior segment lies behind the lens and includes the retina, choroid, optic disc and vitreous humour, the gel-like material filling the space behind the lens.

Nerve fibres arise from the retina and join the optic nerve to carry visual impulses to the brain. The optic nerve, the second cranial nerve, arises from the retina at the point called optic disc and runs from the eyeball like a stalk.

Saturday, December 4, 2010

Free Books for Eye Care Professional

Free Books for Optometrist and Ophthalmologist



E-Books

Jack J Kanski



Aruj. K. Khurana



ppts and other useful links...






Disclaimer Do not violate the copyright law, Following copyright is visitors responsibility. World Of Optometry is not responsible for any kind of copyright violation. Please do not download anything which is illegal by the territory, country or domain you live in. World Of Optometry is not responsible if you download and distribute files or links. It is to be noted that World Of Optometry not related in any way with uploads, World Of Optometry DID NOT UPLOAD any of the files you find here. World Of Optometry just collects (by using google and other search engines) links hosted or posted by other server/people.These Ebooks/Materials here are for educational purposes only and SHOULD BE VIEWED ONLY. If you download any files to view them, you are agreeing to delete them within a 72 hour period. It is strictly recommended to buy the products from the original owner/publisher of the products